确保打印头电源动态输出电压的参考设计
引言
该参考设计能够提供可调节的高压输出,用于打印头供电。设计包括完整的原理图、材料清单(BOM)、效率测量及测试结果。
打印机设计的基本考虑
打印机速度的提高使得打印头消耗的功率增大,打印头温度提升。如果打印机温度过高,墨迹将容易受到污染;如果温度过低,墨迹又会变得模糊。因此,为了获得较高的打印质量,打印头的热管理非常关键。通常需要微控制器调节打印速度,保证工作温度介于两个温度门限之间,而打印机马达的速度是靠作用在马达上的可变直流电压调节的。
参考设计简介
参考设计采用MAX15005电源控制器,能够为打印机马达提供动态变化的直流电压(高达45V)。微控制器产生的PWM输出经过RC滤波后连接到MAX15005的SS引脚,通过改变PWM信号即可调节输出电压。打印机启动时,马达需要较大的励磁电流,MAX15005具有打嗝式保护,在此应用中非常理想。MAX15005可以进入打嗝模式,限制电源输出以降低速率,从而保护所有电路元件。励磁结束后,马达将吸收常规工作电流,转换器进入正常工作模式。
规格和设计电路
参考设计满足以下规格:
- 输入电压:32V至45V
- 输出电压:25V至45V (通过微控制器由外部调节)
- 输出电流:0至2A
- 输出纹波:±0.5V
- 输入纹波:±100mV
- 效率:> 93% (满负荷时)
- 开关频率:400kHz
详情介绍
引言
该参考设计能够提供可调节的高压输出,用于打印头供电。设计包括完整的原理图、材料清单(BOM)、效率测量及测试结果。
打印机设计的基本考虑
打印机速度的提高使得打印头消耗的功率增大,打印头温度提升。如果打印机温度过高,墨迹将容易受到污染;如果温度过低,墨迹又会变得模糊。因此,为了获得较高的打印质量,打印头的热管理非常关键。通常需要微控制器调节打印速度,保证工作温度介于两个温度门限之间,而打印机马达的速度是靠作用在马达上的可变直流电压调节的。
参考设计简介
参考设计采用MAX15005电源控制器,能够为打印机马达提供动态变化的直流电压(高达45V)。微控制器产生的PWM输出经过RC滤波后连接到MAX15005的SS引脚,通过改变PWM信号即可调节输出电压。打印机启动时,马达需要较大的励磁电流,MAX15005具有打嗝式保护,在此应用中非常理想。MAX15005可以进入打嗝模式,限制电源输出以降低速率,从而保护所有电路元件。励磁结束后,马达将吸收常规工作电流,转换器进入正常工作模式。
规格和设计电路
参考设计满足以下规格:
- 输入电压:32V至45V
- 输出电压:25V至45V (通过微控制器由外部调节)
- 输出电流:0至2A
- 输出纹波:±0.5V
- 输入纹波:±100mV
- 效率:> 93% (满负荷时)
- 开关频率:400kHz
图1所示电路满足上述规格,该设计中,输出电压可能低于或高于输入电压,MAX15005配置为SEPIC架构。
图1. MAX15005A SEPIC转换器原理图,FSW = 400kHz。
表1列出了参考设计的材料清单(BOM)。
表1. 打印头电源BOM
Designator | Description | Comment | Footprint | Manufacturer | Quantity | Value |
---|---|---|---|---|---|---|
C1, C6 | Electrolytic capacitor | EEVFK1H331Q | 12.5mm x 13.5mm | Panasonic® | 2 | 330µF/50V |
C2, C4, C5, C7, C8, C9 | Capacitor | GRM32ER71H475KA88L | 1210 | Murata® | 6 | 4.7µF/50V |
C3 | Capacitor | GRM31MR71H105KA88L | 1206 | Murata | 1 | 1µF/50V |
C10, C12 | Capacitor | GRM188R71C105KA12D | 603 | Murata | 2 | 1µF/16V |
C11 | Capacitor | GRM1885C1H181JA01D | 603 | Murata | 1 | 180pF |
C13 | Capacitor | GRM1885C1H101JA01D | 603 | Murata | 1 | 100pF |
C14 | Capacitor | GRM1885C1H271JA01D | 603 | Murata | 1 | 270pF |
C15 | Capacitor | GRM188R71E474KA12D | 603 | Murata | 1 | 0.47µF |
C16 | Capacitor | GRM188R71H102KA01D | 603 | Murata | 1 | 1000pF |
C17 | Capacitor | GRM188R71H104KA93D | 603 | Murata | 1 | 100nF |
C18 | Capacitor | GRM1885C1H331JA01D | 603 | Murata | 1 | 330pF |
D1 | Zener diode | MMSZ10T1 | SOD-123 | ON Semiconductor® | 1 | 10V, 500mW Zener |
D2 | Schottky rectifier | FEPB6BT | D²PAK | Vishay® | 1 | 100V/6A Schottky |
L1, L2 | Inductor | D05040H-683MLD | D05040 | Coil Craft | 2 | 68µH |
Q1, Q2 | n-Channel MOSFET | HUF76609D3S | DPAK | Fairchild Semiconductor® | 2 | 100V/10A MOSFET |
R1 | Resistor | SMD 1% Resistor | 603 | Vishay | 1 | 475kΩ |
R2 | Resistor | SMD 1% Resistor | 603 | Vishay | 1 | 20kΩ |
R3 | Resistor | SMD 1% Resistor | 603 | Vishay | 1 | 100kΩ |
R4 | Resistor | SMD 1% Resistor | 603 | Vishay | 1 | 2.61kΩ |
R5 | Resistor | SMD 1% Resistor | 603 | Vishay | 1 | 2.2Ω |
R6 | Resistor | SMD 1% Resistor | 603 | Vishay | 1 | 1kΩ |
R7 | Resistor | SMD 1% Resistor | 603 | Vishay | 1 | 7.87kΩ |
R8, R9 | Resistor | LRCLR201001R075F | 2010 | IRC | 2 | 0.075Ω/1W |
R10 | Resistor | SMD 1% Resistor | 603 | Vishay | 1 | 774.8Ω |
R11 | Resistor | SMD 1% Resistor | 603 | Vishay | 1 | 15kΩ |
R12 | Resistor | SMD 1% Resistor | 603 | Vishay | 1 | 5kΩ |
R13 | Resistor | ERJ-1TYJ5R0 | 2512 | Panasonic | 1 | 5Ω/1W |
R14 | Resistor | SMD 1% Resistor | 603 | Vishay | 1 | 10Ω |
U1 | PWM controller | MAX15005A | TSSOP-16-EP | Maxim® | 1 | – |
效率曲线
效率与负载电流的关系曲线如图2和图3所示,图2和图3的输出电压分别为:VOUT = 25V和VOUT = 45V。
图2. 负载电流与转换器效率,VOUT = 25V。
图3. 负载电流与转换器效率,VOUT = 45V。
实验结果
不同输入激励时,转换器输出电压与负载电流的对应关系如下图所示。
测试条件:VIN = 45V和VOUT = 45V。
Ch1:输出电压;Ch2:输入电压;Ch3:MOSFET漏极电压;Ch4:输出电流。
测试条件:VIN = 32V和VOUT = 45V。
Ch1:输出电压;Ch2:输入电压;Ch3:MOSFET栅极电压;Ch4:输出电流。
测试条件:VIN = 45V和VOUT = 45V。
Ch1:输出电压;Ch2:输入电压;Ch3:MOSFET栅极电压;Ch4:输出电流。
测试条件:VIN = 45V和VOUT = 25V。
Ch1:输出电压;Ch2:输入电压;Ch3:MOSFET栅极电压;Ch4:输出电流。