应用与设计

MAXREFDES63#


MAXREFDES63# 系统板 放大+

概述

工业4.01标志着第四次工业革命,其特点是分布式、智能化控制系统。工业4.0摆脱了过去体积笨重、集中式的可编程逻辑控制器,允许工厂高度可配置、高度模块化,支持的传感器输入数量大幅增加,输出较之前更高。超小尺寸PLC,或称之为微型PLC,是工业4.0工厂的核心,以极小尺寸封装提供高性能,功耗极低。MAXREFDES63#是Maxim Integrated的微型PLC、八通道、数字输出卡。

MAXREFDES63#参考设计(图1)具有八通道数字输出,电源和数字隔离。设计集成600VRMS数据隔离器(MAX14850)、STM32F1微控制器、FTDI USB-UART桥、高效DC-DC转换器(MAX17515),以及隔离/稳压+22V和+5V电源轨(MAX17498C)。整个系统的功耗通常小于400mW,适合于信用卡大小的空间。


图1. MAXREFDES63#参考设计方框图。

特性

  • 隔离电源和数据
  • 微型PLC规格
  • 器件驱动器
  • C语言源代码示例

应用

  • 工业控制和自动化
  • 过程控制
  • PLC
详情介绍

MAXREFDES63# 系统板 放大+



概述

工业4.01标志着第四次工业革命,其特点是分布式、智能化控制系统。工业4.0摆脱了过去体积笨重、集中式的可编程逻辑控制器,允许工厂高度可配置、高度模块化,支持的传感器输入数量大幅增加,输出较之前更高。超小尺寸PLC,或称之为微型PLC,是工业4.0工厂的核心,以极小尺寸封装提供高性能,功耗极低。MAXREFDES63#是Maxim Integrated的微型PLC、八通道、数字输出卡。

MAXREFDES63#参考设计(图1)具有八通道数字输出,电源和数字隔离。设计集成600VRMS数据隔离器(MAX14850)、STM32F1微控制器、FTDI USB-UART桥、高效DC-DC转换器(MAX17515),以及隔离/稳压+22V和+5V电源轨(MAX17498C)。整个系统的功耗通常小于400mW,适合于信用卡大小的空间。


图1. MAXREFDES63#参考设计方框图。

特性

  • 隔离电源和数据
  • 微型PLC规格
  • 器件驱动器
  • C语言源代码示例

应用

  • 工业控制和自动化
  • 过程控制
  • PLC

Detailed Description of Hardware

The power requirement is shown in Table 1.

Table 1. Power Requirement for the MAXREFDES63# Reference Design

Power Type Input Voltage (V) Input Current (mA, typ)
On-board isolated power 24 15 (All LEDs on) + Load Current

Note: STM32 and FTDI are powered by USB separately.

The MAX14900 (U400) is an octal power switch with per-channel configuration feature.

The ultra-efficient MAX17498C (U102) generates the isolated +22V, and +5V rails from a 24V supply. The MAX14850 (U301) digital data isolators provide data isolation. The combined power and data isolation achieved is 600VRMS.

The MAX17515 (U101) step-down DC-DC converter converts the +5V supply from the USB to +3.3V and powers the STM32 (U1) microcontroller and FTDI (U201) USB-UART bridge.

Detailed Description of Firmware

The MAXREFDES63# uses the on-board STM32F1 microcontroller to communicate with the octal power switch. The user enters configuration data through a terminal program and the digital outputs will be updated. The simple process flow is shown in Figure 2. The firmware is written in C using the Keil µVision5 tool.


Figure 2. The MAXREFDES63# firmware flowchart.

The complete source code is provided to speed up customer development. Code documentation can be found in the corresponding firmware platform files.

Quick Start

Required equipment:

  • Windows® PC with a USB port
  • MAXREFDES63# board
  • 24V power supply

Procedure

The complete source code is provided to speed up customer development. Code documentation can be found in the corresponding firmware platform files.

  1. Turn off or keep off the 24V power supply.
  2. The MAXREFDES63# utilizes the FTDI USB-UART bridge IC. If Windows cannot automatically install the driver for the FTDI USB-UART bridge IC, the driver is available for download from www.ftdichip.com/Drivers/D2XX.htm.
  3. Connect the negative terminal of the 24V power supply to the PGND connector on the MAXREFDES63# board. Connect the positive terminal of the 24V power supply to the +24V connector on the MAXREFDES63# board.
  4. Turn on the 24V power supply.
  5. Connect the USB cable from the PC to the MAXREFDES63# board.
  6. Open Hyperterminal or similar Terminal program on the PC. Find the appropriate COM port, usually a higher number port, such as COM4, or COM6, and configure the connection for 921600, n, 8, 1, none (flow control).
  7. The MAXREFDES63# software will display a menu (Figure 3)
  8. Press any key in the terminal program to start the output configuration.
  9. Enter the Configuration Byte in hex format.
  10. Enter the desired output data in hex format.
  11. Verify the output status by observing the 8 green LEDs under connectors J400 and J401 on the board. These LEDs are connected to the digital outputs of the card.

Terminal program main menu.
Figure 3. Terminal program main menu.

Lab Measurements

Figure 4 and Figure 5 shows the status of the LEDs with the output configuration byte set to 0xFF and the output data byte set to 0xAA.

Test setup.
Figure 4. Test setup.

Test outputs.
Figure 5. Test outputs.

Reference

  1. The new generation of manufacturing production is called Industry 4.0 in Germany and Smart Manufacturing System elsewhere. See, Securing the future of German manufacturing industry, Recommendations for implementing the strategic initiative INDUSTRIE 4.0, Final report of the Industrie 4.0 Working Group, Industry 4.0 Working Group, Acatech National Academy of Science and Engineering, April 2013, www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/
    Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
    . Henceforth cited as Industrie 4.0. Although the Industrie 4.0 report is focused on Germany, the implications of the German research and findings are recognized for industry in other countries. See also Ferber, Stefan, “Industry 4.0 – Germany takes the first steps toward the next industrial revolution,” Bosch Software Group, Blogging the Internet of Things, October 16, 2013, http://blog.bosch-si.com/industry-4-0-germany-takes-first-steps-toward-the-next-industrial-revolution/.

    There are many sources for Smart Manufacturing Leadership. An interesting summary report of issues and topics can be found at the Smart Manufacturing Leadership Coalition Committee Working Meeting, Minneapolis, MN, U.S., Thursday, October 20, 2011, https://smart-process-manufacturing.ucla.edu/workshops/2011-workshop/presentations/SMLC%2010-20-11v3.pdf. Also see, Implementing 21st Century Smart Manufacturing, Workshop Summary Report, Smart Manufacturing Leadership Coalition, June 24, 2011, https://smart-process-manufacturing.ucla.edu/about/news/Smart%20Manufacturing%206_24_11.pdf. A simple web search on the topic will reveal considerably more references.

Windows is a registered trademark and registered service mark of Microsoft Corporation.